Emerging Field Grant

The Emerging Field Grant of the Faculty of Earth Sciences, Geography and Astronomy seeks to support members of the Faculty by stimulating and strengthening rather risky research within the research foci in new emerging fields. The grant awards a pre-doc fellowship for three years. Further details can be obtained from the next call for submissions (probably in spring 2018). The grant’s announcement will be published on this website


Award winners

2017

  • Awarded project: "Elucidating natural colloidal processes by single-particle multi-element fingerprinting with ultra-high frequency spectrometry" led by Dr. Frank von der Kammer in the theme Nanogeosciences of the Department of Environmental Geosciences and under engagement of a Pre-doc

Over the last decade new analytical opportunities have emerged to investigate the role and functions of natural colloids and natural nanoparticles (particles in the size range from 1 to 1000 and 1 to 100 nanometers respectively) in environmental processes such as pollutant transport. Only a small fraction by mass, the large specific surface area of colloidal particles makes them an important part of the reactive surface area on the planet, with direct implications on pollutant scavenging and transport. The concepts and methods developed within the Nanogeosciences theme of the Department of Environmental Geosciences, along with novel instrumentation now available at the University of Vienna, enable us to gain  insights into these processes on a (formerly not accessible) highly sensitive and isotopically resolved single particle level. This project deals with the occurrence, formation and transformation of natural colloids and natural nanoparticles and the associated trace metals in soils, sediments, peat, surface waters and ice core samples that reflect influences from pre-industrial to current anthropogenic pollution, with sample sites ranging from pristine to highly contaminated areas. Overall the project strives for a better understanding of the anthropogenic impact on the environment by untangling the complexity of natural colloidal processes.

  • Awarded project: "Mapping and Modelling Vienna’s Anthropocene Surge" led by ao. Univ.-Prof. Dr. Michael Wagreich (Department of Geodynamics and Sedimentology, group Sedimentology and Stratigraphy) and Univ.-Prof. Dr. Wolfgang Kainz (Department of Geography and Geoinformation, group Cartography and Geoinformation) and under engagement of a Pre-doc

The term Anthropocene is widely used denoting changes on the Earth System that result from the influence of mankind on nature. The awarded project focuses on the growth of the anthropogenic influence in the urban environments of Vienna and it surroundings, so far not evaluated with regard to the Anthropocene context. The term Anthropocene Surge herein refers to the accelerating growth - forward, upward and downward - of urban artificial deposits under cities such as Vienna from pre-historic to historic time, especially during the last century and a half, ongoing and still accelerating in recent and future times, caused by a combination of human and geological forces. The project aims among others to develop a classification of anthropogenic sediments of Vienna, to map anthropogenic deposits of Vienna using GIS and to develop 3D models of anthropogenic stratal units, showing their present form as well as their development over time. As general approach the project strives to contribute to the stratigraphy of the Anthropocene by exemplifying the evolution of the anthropogenic sediments in Vienna.

2015

  • Awarded project: "Numerical Modelling of Restless Caldera Volcanoes" of the research group Structual Processes led by Univ.-Prof. Dr. Bernhard Grasemann (Department of Geodynamics and Sedimentology) together with Dr. Martin Schöpfer, Privatdozent (Department of Geodynamics and Sedimentology) and ao. Univ.-Prof. Dr. Theodoros Ntaflos (Department of Lithospheric Research) under engagement of Pre-doc Daniel Woodell

Calderas are volcanic depressions of 1 to 100 kilometers diameter that form through catastrophic subsidence of the Earth's crust as a consequence of the fact that a magma reservoir has been drained during a major eruption and that its roof founders. The structure of calderas is poorly understood, which major challenges for risk assessment. In the course of this Emerging Field Grant project, cutting-edge 3D computer simulations of restless calderas are developed, which give insight into volcanic depth processes. It is still unclear whether these simulations represent the natural development of calderas, but the new methodology could revolutionize the research area of volcano tectonics.

2013

  • Awarded project: “In Search for Habitable Worlds: Probing the Young Solar System“ of the research group Star and Planet Formation led by Univ.-Prof. Dr. Manuel Güdel (Department of Astrophysics)  under engagement of Pre-doc Tu Lin

Our solar system and in particular present-day Earth are characterised by manifold conditions. How can these conditions help to reconstruct the distant past of the solar system and our Sun. This is a central question of the winning project of the Emerging Field Grant 2013. While the diversity of extrasolar planetary systems and their stars make a clear statement more difficult, model calculations are intended to provide information about the origin of our planetary environment.