A search for thermal gyro-synchrotron emission from hot stellar coronae
- Autor(en)
- Walter W. Golay, Robert L. Mutel, Dani Lipman, Manuel Güdel
- Abstrakt
We searched for thermal gyro-synchrotron radio emission from a sample of five radio-loud stars whose X-ray coronae contain a hot (K) thermal component. We used the JVLA to measure Stokes I and V/I spectral energy distributions (SEDs) over the frequency range 15 - 45 GHz, determining the best-fitting model parameters using power-law and thermal gyro-synchrotron emission models. The SEDs of the three chromospherically active binaries (Algol, UX Arietis, HR 1099) were well-fit by a power-law gyro-synchrotron model, with no evidence for a thermal component. However, the SEDs of the two weak-lined T Tauri stars (V410 Tau, HD 283572) had a circularly polarized enhancement above 30 GHz that was inconsistent with a pure power-law distribution. These spectra were well-fit by summing the emission from an extended coronal volume of power-law gyro-synchrotron emission and a smaller region with thermal plasma and a much stronger magnetic field emitting thermal gyro-synchrotron radiation. We used Bayesian inference to estimate the physical plasma parameters of the emission regions (characteristic size, electron density, temperature, power-law index, and magnetic field strength and direction) using independently measured radio sizes, X-ray luminosities, and magnetic field strengths as priors, where available. The derived parameters were well-constrained but somewhat degenerate. The power-law and thermal volumes in the pre-main-sequence stars are probably not co-spatial, and we speculate they may arise from two distinct regions: a tangled-field magnetosphere where reconnection occurs and a recently discovered low-latitude poloidal magnetic field, respectively.
- Organisation(en)
- Institut für Astrophysik
- Externe Organisation(en)
- University of Iowa, University of Connecticut
- Journal
- Monthly Notices of the Royal Astronomical Society
- Band
- 522
- Seiten
- 1394-1410
- Anzahl der Seiten
- 17
- ISSN
- 0035-8711
- DOI
- https://doi.org/10.1093/mnras/stad980
- Publikationsdatum
- 06-2023
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103003 Astronomie, 103004 Astrophysik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Astronomy and Astrophysics, Space and Planetary Science
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/1a1108bf-e236-4a7c-9abd-ad08cbedb0b9