<sup>15</sup>NH<sub>3</sub> in the atmosphere of a cool brown dwarf

Autor(en)
David Barrado, Paul Mollière, Polychronis Patapis, Michiel Min, Pascal Tremblin, Francisco Ardevol Martinez, Niall Whiteford, Malavika Vasist, Ioannis Argyriou, Matthias Samland, Pierre Olivier Lagage, Leen Decin, Rens Waters, Thomas Henning, María Morales-Calderón, Manuel Guedel, Bart Vandenbussche, Olivier Absil, Pierre Baudoz, Anthony Boccaletti, Jeroen Bouwman, Christophe Cossou, Alain Coulais, Nicolas Crouzet, René Gastaud, Alistair Glasse, Adrian M. Glauser, Inga Kamp, Sarah Kendrew, Oliver Krause, Fred Lahuis, Michael Mueller, Göran Olofsson, John Pye, Daniel Rouan, Pierre Royer, Silvia Scheithauer, Ingo Waldmann, Luis Colina, Ewine F. van Dishoeck, Tom Ray, Göran Östlin, Gillian Wright
Abstrakt

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5–7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

Organisation(en)
Institut für Astrophysik
Externe Organisation(en)
European Space Astronomy Centre (ESA), Max-Planck-Institut für Astronomie, Eidgenössische Technische Hochschule Zürich, SRON Netherlands Institute for Space Research , Université de Versailles-Saint-Quentin-en-Yvelines, University of Groningen, University of Edinburgh, American Museum of Natural History, Université de Liège, Katholieke Universiteit Leuven, Université Paris Saclay, Radboud University, Université de recherche Paris Sciences et Lettres, Leiden University, The Royal Observatory, Edinburgh, Stockholm University, University of Leicester, University College London, Dublin Institute for Advanced Studies, Oskar Klein Centre
Journal
Nature
Band
624
Seiten
263-266
Anzahl der Seiten
4
ISSN
0028-0836
DOI
https://doi.org/10.1038/s41586-023-06813-y
Publikationsdatum
12-2023
Peer-reviewed
Ja
ÖFOS 2012
103003 Astronomie, 103004 Astrophysik
ASJC Scopus Sachgebiete
General
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/1be08341-06c6-4171-a2ab-87cf19999636