Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes
- Autor(en)
- Paul G. Beck, Josefina Montalban, Thomas Kallinger, Joris De Ridder, Conny Aerts, Rafael A. García, Saskia Hekker, Marc-Antoine Dupret, Benoit Mosser, Patrick Eggenberger, Dennis Stello, Yvonne Elsworth, Søren Frandsen, Fabien Carrier, Michel Hillen, Michael Gruberbauer, Jørgen Christensen-Dalsgaard, Andrea Miglio, Marica Valentini, Timothy R. Bedding, Hans Kjeldsen, Forrest R. Girouard, Jennifer R. Hall, Khadeejah A. Ibrahim
- Abstrakt
When the core hydrogen is exhausted during stellar evolution, the
central region of a star contracts and the outer envelope expands and
cools, giving rise to a red giant. Convection takes place over much of
the star's radius. Conservation of angular momentum requires that the
cores of these stars rotate faster than their envelopes; indirect
evidence supports this. Information about the angular-momentum
distribution is inaccessible to direct observations, but it can be
extracted from the effect of rotation on oscillation modes that probe
the stellar interior. Here we report an increasing rotation rate from
the surface of the star to the stellar core in the interiors of red
giants, obtained using the rotational frequency splitting of recently
detected `mixed modes'. By comparison with theoretical stellar models,
we conclude that the core must rotate at least ten times faster than the
surface. This observational result confirms the theoretical prediction
of a steep gradient in the rotation profile towards the deep stellar
interior.
- Organisation(en)
- Institut für Astrophysik
- Externe Organisation(en)
- Katholieke Universiteit Leuven, Université de Liège, University of Amsterdam (UvA), Université de recherche Paris Sciences et Lettres, Universität Genf, The University of Sydney, University of Birmingham, Aarhus University, Saint Mary's University, National Aeronautics & Space Administration (NASA), Radboud University, Université Paris VII - Paris-Diderot
- Journal
- Nature
- Band
- 481
- Seiten
- 55-57
- ISSN
- 0028-0836
- DOI
- https://doi.org/10.1038/nature10612
- Publikationsdatum
- 01-2012
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103004 Astrophysik
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/29c2d335-d7a6-43fa-88b1-0a95f984a712