CLASH-VLT: Enhancement of (O/H) in z  =  0.35 RX J2248−4431 cluster galaxies

Autor(en)
Bianca-Iulia Ciocan, Christian Maier, Bodo Ziegler, Miguel Anibal Verdugo Olivares
Abstrakt

Aims. Gas-phase metallicities offer insight into the chemical evolution of galaxies as they reflect the recycling of gas through star formation and galactic inflows and outflows. Environmental effects such as star-formation quenching mechanisms play an important role in shaping the evolution of galaxies. Clusters of galaxies at z <  0.5 are expected to be the sites where environmental effects can be clearly observed with present-day telescopes.Methods. We explored the Frontier Fields cluster RX J2248−443 at z = 0.348 with VIMOS/VLT spectroscopy from CLASH-VLT, which covers a central region corresponding to almost 2 virial radii. The fluxes of [OII] λ3727, Hβ, [OIII] λ5007, Hα and [NII] λ6584 emission lines were measured allowing the derivation of (O/H) gas metallicities, star formation rates based on extinction-corrected Hα fluxes, and contamination from active galactic nuclei. We compared our sample of cluster galaxies to a population of field galaxies at similar redshifts.Results. We use the location of galaxies in projected phase-space to distinguish between cluster and field galaxies. Both populations follow the star-forming sequence in the diagnostic diagrams, which allow the ionising sources in a galaxy to be disentangled, with only a low number of galaxies classified as Seyfert II. Both field and cluster galaxies follow the “main sequence” of star-forming galaxies, with no substantial difference observed between the two populations. In the mass–metallicity (MZ) plane, both high-mass field and cluster galaxies show comparable (O/H)s to the local SDSS MZ relation, with an offset of low-mass galaxies (log(M/M) < 9.2) towards higher metallicities. While both the metallicities of “accreted” (R <  R500) and “infalling” (R >  R500) cluster members are comparable at all masses, the cluster galaxies from the “mass complete” bin (which is the intermediate mass bin in this study: 9.2 <  log(M/M) < 10.2), show more enhanced metallicities than their field counterparts by a factor of 0.065 dex with a ∼1.8σ significance. The intermediate-mass field galaxies are in accordance with the expected (O/H)s from the fundamental metallicity relation, while the cluster members deviate strongly from the model predictions, namely by a factor of ∼0.12 dex. The results of this work are in accordance with studies of other clusters at z <  0.5 and favour the scenario in which the hot halo gas of low- and intermediate-mass cluster galaxies is removed due to ram pressure stripping, leading to an increase in their gas-phase metallicity.

Organisation(en)
Institut für Astrophysik
Journal
Astronomy & Astrophysics
Band
633
Seiten
1-17
Anzahl der Seiten
17
ISSN
0004-6361
DOI
https://doi.org/10.1051/0004-6361/201936712
Publikationsdatum
01-2020
Peer-reviewed
Ja
ÖFOS 2012
103003 Astronomie, 103004 Astrophysik
Schlagwörter
ASJC Scopus Sachgebiete
Astronomy and Astrophysics, Space and Planetary Science
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/34f13411-808a-42a6-8074-41538a993869