Tuning of Redox Properties for the Design of Ruthenium Anticancer Drugs:  Part 2. Syntheses, Crystal Structures, and Electrochemistry of Potentially Antitumor [RuIII/IICl6-n(Azole)n]z (n = 3, 4, 6) Complexes

Autor(en)
Erwin Reisner, Vladimir Arion, Anna Eichinger, Norbert Kandler, Gerald Giester, Armando J L Pombeiro, Bernhard Keppler
Abstrakt

A series of mixed chloro-azole ruthenium complexes with potential antitumor activity, viz., mer-[RuIIICl3(azole)3] (B), trans-[RuIIICl2(azole)4]Cl (C), trans-[Ru IICl2(azole)4] (D), and [RuII(azole) 6](SO3CF3)2 (E), where azole = 1-butylimidazole (1), imidazole (2), benzimidazole (3), 1-methyl-1,2,4-triazole (4), 4-methylpyrazole (5), 1,2,4-triazole (6), pyrazole (7), and indazole (8), have been prepared as a further development of anticancer drugs with the general formula [RuCl4(azole)2]- (A). These compounds were characterized by elemental analysis, IR spectroscopy, electronic spectra, electrospray mass spectrometry, and X-ray crystallography. The electrochemical behavior has been studied in detail in DMF, DMSO, and aqueous media using cyclic voltammetry, square wave voltammetry, and controlled potential electrolysis. Compounds B and a number of C complexes exhibit one RuIII/Ru II reduction, followed, at a sufficiently long time scale, by metal dechlorination on solvolysis. The redox potential values in organic media agree with those predicted by Lever's parametrization method, and the yet unknown EL parameters were estimated for 1 (EL = 0.06 V), 3 (EL = 0.10 V), 4 (EL = 0.17 V), and 5 (EL = 0.18 V). The EL values for the azole ligands 1-8 correlate linearly with their basicity (pKa value of the corresponding azolium acid H2L+). In addition, a logarithmic dependence between the homogeneous rate constants for the reductively induced stepwise replacement of chloro ligands by solvent molecules and the RuIII/RuII redox potentials was observed. Lower E1/2 values (higher net electron donor character of the ligands) result in enhanced kinetic rate constants of solvolysis upon reduction. The effect of the net charge on the Ru III/RuII redox potentials in water is tentatively explained by the application of the Born equation. In addition, the pH-dependent electrochemical behavior of trans-[RuCl2(1,2,4-triazole) 4]Cl is discussed. Œ 2005 American Chemical Society.

Organisation(en)
Institut für Physikalische Chemie, Institut für Anorganische Chemie, Institut für Mineralogie und Kristallographie
Externe Organisation(en)
Instituto Superior Técnico
Journal
Inorganic Chemistry
Band
44
Seiten
6704-6716
Anzahl der Seiten
13
ISSN
0020-1669
DOI
https://doi.org/10.1021/ic0503737
Publikationsdatum
2005
Peer-reviewed
Ja
ÖFOS 2012
105113 Kristallographie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/392cbb4d-e444-4b13-a010-a893be38c656