Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil

Autor(en)
Olusegun Ayodeji Oyewole, Erich Inselsbacher, Torgny Nasholm
Abstrakt

Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10

-8 and 3 × 10

-7 m s

-1, thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition.

Organisation(en)
Institut für Geographie und Regionalforschung
Externe Organisation(en)
Swedish University of Agricultural Sciences (SLU)
Journal
New Phytologist
Band
201
Seiten
1056-1064
Anzahl der Seiten
9
ISSN
0028-646X
DOI
https://doi.org/10.1111/nph.12553
Publikationsdatum
02-2014
Peer-reviewed
Ja
ÖFOS 2012
507015 Regionalforschung
Schlagwörter
ASJC Scopus Sachgebiete
Physiology, Plant Science
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/5534bdce-73cd-4dde-bb46-709209ccbefb