MINDS. The Detection of <sup>13</sup>CO <sub>2</sub> with JWST-MIRI Indicates Abundant CO <sub>2</sub> in a Protoplanetary Disk

Autor(en)
Sierra L. Grant, Ewine F. van Dishoeck, Benoit Tabone, Danny Gasman, Thomas Henning, Inga Kamp, Manuel Güdel, Pierre-Olivier Lagage, Giulio Bettoni, Giulia Perotti, Valentin Christiaens, Matthias Samland, Aditya M. Arabhavi, Ioannis Argyriou, Alain Abergel, Olivier Absil, David Barrado, Anthony Boccaletti, Jeroen Bouwman, Alessio Caratti o Garatti, Vincent Geers, Adrian M. Glauser, Rodrigo Guadarrama, Hyerin Jang, Jayatee Kanwar, Fred Lahuis, Maria Morales-Calderón, Michael Mueller, Cyrine Nehmé, Göran Olofsson, Eric Pantin, Nicole Pawellek, Tom P. Ray, Donna Rodgers-Lee, Silvia Scheithauer, Jürgen Schreiber, Kamber Schwarz, Milou Temmink, Bart Vandenbussche, Marissa Vlasblom, L.~B.~F.~M. Waters, Gillian Wright, Luis Colina, Thomas R. Greve, Kay Justannont, Göran Östlin
Abstrakt

We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from

12CO

2

13CO

2, H

2O, HCN, C

2H

2, and OH is identified with

13CO

2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the

12CO

2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K.

13CO

2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than

12CO

2. The derived N CO 2 / N H 2 O ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H

2O and CO

2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.

Organisation(en)
Institut für Astrophysik
Externe Organisation(en)
Max-Planck-Institut für extraterrestrische Physik, Université Paris Saclay, Katholieke Universiteit Leuven, Max-Planck-Institut für Astronomie, University of Groningen, Université de Liège, Centro de Astrobiología (CAB), Icm & Sorbonne University, INAF-Osservatorio Astronomico di Capodimonte, The Royal Observatory, Edinburgh, Eidgenössische Technische Hochschule Zürich, Radboud University, SRON Netherlands Institute for Space Research , Stockholm University, Dublin Institute for Advanced Studies, Leiden University, Technical University of Denmark (DTU), Chalmers University of Technology, Österreichische Akademie der Wissenschaften (ÖAW)
Journal
The Astrophysical journal Letters
Band
947
Seiten
L6
ISSN
2041-8205
DOI
https://doi.org/10.3847/2041-8213/acc44b
Publikationsdatum
04-2023
Peer-reviewed
Ja
ÖFOS 2012
103004 Astrophysik, 103003 Astronomie
Schlagwörter
ASJC Scopus Sachgebiete
Astronomy and Astrophysics, Space and Planetary Science
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/5e255fab-45f3-40c7-a4fb-bc4666b60b51