Primordial dusty rings and episodic outbursts in protoplanetary discs

Autor(en)
Kundan Kadam, Eduard Vorobyov, Shantanu Basu
Abstrakt

We investigate the formation and evolution of 'primordial' dusty rings occurring in the inner regions of protoplanetary discs, with the help of long-term, coupled dust-gas, magnetohydrodynamic simulations. The simulations are global and start from the collapse phase of the parent cloud core, while the dead zone is calculated via an adaptive α formulation by taking into account the local ionization balance. The evolution of the dusty component includes its growth and back reaction on to the gas. Previously, using simulations with only a gas component, we showed that dynamical rings form at the inner edge of the dead zone. We find that when dust evolution, as well as magnetic field evolution in the flux-freezing limit are included, the dusty rings formed are more numerous and span a larger radial extent in the inner disc, while the dead zone is more robust and persists for a much longer time. We show that these dynamical rings concentrate enough dust mass to become streaming unstable, which should result in a rapid planetesimal formation even in the embedded phases of the system. The episodic outbursts caused by the magnetorotational instability have a significant impact on the evolution of the rings. The outbursts drain the inner disc of grown dust, however, the period between bursts is sufficiently long for the planetesimal growth via streaming instability. The dust mass contained within the rings is large enough to ultimately produce planetary systems with the core accretion scenario. The low-mass systems rarely undergo outbursts, and, thus, the conditions around such stars can be especially conducive for planet formation.

Organisation(en)
Institut für Astrophysik
Externe Organisation(en)
Russian Academy of Sciences, University of Western Ontario
Journal
Monthly Notices of the Royal Astronomical Society
Band
516
Seiten
4448-4468
Anzahl der Seiten
21
ISSN
0035-8711
DOI
https://doi.org/10.1093/mnras/stac2455
Publikationsdatum
11-2022
Peer-reviewed
Ja
ÖFOS 2012
103003 Astronomie, 103004 Astrophysik
Schlagwörter
ASJC Scopus Sachgebiete
Astronomy and Astrophysics, Space and Planetary Science
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/f0960307-5ecd-48df-a640-93fa3fcfb3bc