Towards a unified model of stellar rotation - II. Model-dependent characteristics of stellar populations

Autor(en)
Adrian T. Potter, Christopher A. Tout, Ines Brott Furrer
Abstrakt

Rotation has a number of important effects on the evolution of stars. Apart from structural changes because of the centrifugal force, turbulent mixing and meridional circulation caused by rotation can dramatically affect a star’s chemical evolution. This leads to changes in the surface temperature and luminosity as well as modifying its lifetime. Observationally, rotation decreases the surface gravity, causes enhanced mass loss and leads to surface abundance anomalies of various chemical isotopes. The replication of these physical effects with simple stellar evolution models is very difficult and has resulted in the use of numerous different formulations to describe the physics. Using stellar evolution calculations based on several physical models, we discuss the features of the resulting simulated stellar populations which can help to distinguish between the models.

Organisation(en)
Institut für Astrophysik
Externe Organisation(en)
University of Cambridge
Journal
Monthly Notices of the Royal Astronomical Society
Band
423
Seiten
1221-1233
Anzahl der Seiten
13
ISSN
0035-8711
Publikationsdatum
2012
Peer-reviewed
Ja
ÖFOS 2012
103004 Astrophysik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/f90972a4-4e27-4c68-9595-c1f703ff2ecb