Distinct element geomechanical modelling of the formation of sinkhole clusters within large-scale karstic depressions

Autor(en)
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P.J. Schöpfer, Sacha Emam, Torsten Dahm
Abstrakt

The 2-D distinct element method (DEM) code (PFC2D-V5) is used here to simulate the evolution of subsidence-related karst landforms, such as single and clustered sinkholes, and associated larger-scale depressions. Subsurface material in the DEM model is removed progressively to produce an array of cavities; this simulates a network of subsurface groundwater conduits growing by chemical/ mechanical erosion. The growth of the cavity array is coupled mechanically to the gravitationally loaded surroundings, such that cavities can grow also in part by material failure at their margins, which in the limit can produce individual collapse sinkholes. Two end-member growth scenarios of the cavity array and their impact on surface subsidence were examined in the models: (1) cavity growth at the same depth level and growth rate; (2) cavity growth at progressively deepening levels with varying growth rates. These growth scenarios are characterised by differing stress patterns across the cavity array and its overburden, which are in turn an important factor for the formation of sinkholes and uvalalike depressions. For growth scenario (1), a stable compression arch is established around the entire cavity array, hindering sinkhole collapse into individual cavities and favouring block-wise, relatively even subsidence across the whole cavity array. In contrast, for growth scenario (2), the stress system is more heterogeneous, such that local stress concentrations exist around individual cavities, leading to stress interactions and local wall/overburden fractures. Consequently, sinkhole collapses occur in individual cavities, which results in uneven, differential subsidence within a larger-scale depression. Depending on material properties of the cavityhosting material and the overburden, the larger-scale depression forms either by sinkhole coalescence or by widespread subsidence linked geometrically to the entire cavity array. The results from models with growth scenario (2) are in close agreement with surface morphological and subsurface geophysical observations from an evaporite karst area on the eastern shore of the Dead Sea.

Organisation(en)
Institut für Geologie
Externe Organisation(en)
Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum, University College Dublin, University of Adelaide, Leibniz-Institut für Angewandte Geophysik (LIAG), Itasca Consultants S.A.S
Journal
Solid earth
Band
10
Seiten
1219-1241
Anzahl der Seiten
23
ISSN
1869-9510
DOI
https://doi.org/10.5194/se-10-1219-2019
Publikationsdatum
07-2019
Peer-reviewed
Ja
ÖFOS 2012
105101 Allgemeine Geologie
ASJC Scopus Sachgebiete
Soil Science, Geophysics, Geology, Geochemistry and Petrology, Earth-Surface Processes, Stratigraphy, Palaeontology
Link zum Portal
https://ucris.univie.ac.at/portal/de/publications/distinct-element-geomechanical-modelling-of-the-formation-of-sinkhole-clusters-within-largescale-karstic-depressions(9eb068b7-b7e5-42e1-8088-13bca0366606).html