Kinetics and mechanism of the substitution reactions of some monofunctional Pt(II) complexes with heterocyclic nitrogen donor molecules. Crystal structure of [Pt(bpma)(pzBr)]Cl<sub>2</sub>·2H<sub>2</sub>O
- Author(s)
- Milica Kosovic, Snežana Jovanović, Goran A. Bogdanović, Gerald Giester, Zeljko K. Jacimovic, Živadin D. Bugarčić, Biljana Petrović
- Abstract
Substitution reactions of [Pt(terpy)Cl]
+ (terpy = 2,2′;6′,2′′-terpyridine), [Pt(bpma)Cl]
+ (bpma = bis(2-pyridylmethyl)amine), [Pt(dien)Cl]
+ (dien = diethylenetriamine or 1,5-diamino-3-azapentane) and [Pt(tpdm)Cl]
+ (tpdm = tripyridinedimethane) with nitrogen donor heterocyclic molecules, such as 3-amino-4-iodo-pyrazole (pzI), 5-amino-4-bromo-3-methyl-pyrazole (pzBr) and imidazole (Im), were studied in aqueous 0.10 M NaClO
4 in the presence of 10 mM NaCl using variable-temperature UV–vis spectrophotometry. The second-order rate constants k
2 indicate decrease in reactivity in the order [Pt(terpy)Cl]
+ > [Pt(bpma)Cl]
+ > [Pt(tpdm)Cl]
+ > [Pt(dien)Cl]
+. The most reactive nucleophile among the heterocyclic compounds is imidazole, while pzI shows slightly higher reactivity than pzBr. Activation parameters were also determined and the negative values for entropies of activation, ΔS
≠, support an associative mode of substitution for all substitution processes. Crystal structure of [Pt(bpma)(pzBr)]Cl
2·2H
2O was determined by single-crystal X-ray analysis. The coordination geometry of the complex is distorted square-planar while the bond distance Pt–N2(pzBr) is longer than the other three Pt–N distances.
- Organisation(s)
- Department of Mineralogy and Crystallography
- External organisation(s)
- University of Kragujevac, University of Montenegro, University of Belgrade
- Journal
- Journal of Coordination Chemistry
- Volume
- 69
- Pages
- 2819-2831
- No. of pages
- 13
- ISSN
- 0095-8972
- DOI
- https://doi.org/10.1080/00958972.2016.1224336
- Publication date
- 08-2016
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 104015 Organic chemistry, 104011 Materials chemistry, 105113 Crystallography
- Keywords
- ASJC Scopus subject areas
- Materials Chemistry, Physical and Theoretical Chemistry
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/26aa2bd8-9c71-4bf6-ba9c-78d579f4d8da