Nanoscale Coloristic Pigments

Author(s)
Nicole Neubauer, Lorette Scifo, Jana Navratilova, Andreas Gondikas, Aiga Mackevica, Daniel Borschneck, Perrine Chaurand, Vladimir Vidal, Jerome Rose, Frank Von Der Kammer, Wendel Wohlleben
Abstract

The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined. Standardized protocols/methods for release sampling, detection, and characterization of release rate and form were applied: Transformation of the bulk material was analyzed by Scanning Electron Microscopy (SEM), X-ray-tomography and Fourier-Transform Infrared spectroscopy (FTIR); releases were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), single-particle-ICP-MS (sp-ICP-MS), Transmission Electron Microscopy (TEM), Analytical Ultracentrifugation (AUC), and UV/Vis spectroscopy. In all scenarios, the detectable particulate releases were attributed primarily to contaminations from handling and machining of the plastics, and were not identified with the pigments, although the contamination of 4 mg/kg (Fe) was dwarfed by the intentional content of 5800 mg/kg (Fe as Fe2O3 pigment). We observed modulations (which were at least partially preventable by UV stabilizers) when comparing as-produced and aged nanocomposites, but no significant increase of releases. Release of pigments was negligible within the experimental error for all investigated scenarios, with upper limits of 10 mg/m2 or 1600 particles/mL. This is the first holistic confirmation that pigment nanomaterials remain strongly contained in a plastic that has low diffusion and high persistence such as the polyolefin High Density Polyethylene (HDPE).

Organisation(s)
External organisation(s)
BASF SE, Centre National De La Recherche Scientifique (CNRS), Technical University of Denmark (DTU)
Journal
Environmental Science & Technology
Volume
51
Pages
11669-11680
No. of pages
12
ISSN
0013-936X
DOI
https://doi.org/10.1021/acs.est.7b02578
Publication date
10-2017
Peer reviewed
Yes
Austrian Fields of Science 2012
104023 Environmental chemistry, 104002 Analytical chemistry, 105906 Environmental geosciences, 210004 Nanomaterials
Keywords
ASJC Scopus subject areas
General Chemistry, Environmental Chemistry
Portal url
https://ucrisportal.univie.ac.at/en/publications/5ddca6ec-4875-4cb1-b249-7d054c5951b8