MINDS. The Detection of <sup>13</sup>CO <sub>2</sub> with JWST-MIRI Indicates Abundant CO <sub>2</sub> in a Protoplanetary Disk
- Author(s)
- Sierra L. Grant, Ewine F. van Dishoeck, Benoit Tabone, Danny Gasman, Thomas Henning, Inga Kamp, Manuel Güdel, Pierre-Olivier Lagage, Giulio Bettoni, Giulia Perotti, Valentin Christiaens, Matthias Samland, Aditya M. Arabhavi, Ioannis Argyriou, Alain Abergel, Olivier Absil, David Barrado, Anthony Boccaletti, Jeroen Bouwman, Alessio Caratti o Garatti, Vincent Geers, Adrian M. Glauser, Rodrigo Guadarrama, Hyerin Jang, Jayatee Kanwar, Fred Lahuis, Maria Morales-Calderón, Michael Mueller, Cyrine Nehmé, Göran Olofsson, Eric Pantin, Nicole Pawellek, Tom P. Ray, Donna Rodgers-Lee, Silvia Scheithauer, Jürgen Schreiber, Kamber Schwarz, Milou Temmink, Bart Vandenbussche, Marissa Vlasblom, L.~B.~F.~M. Waters, Gillian Wright, Luis Colina, Thomas R. Greve, Kay Justannont, Göran Östlin
- Abstract
We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from
12CO
2
13CO
2, H
2O, HCN, C
2H
2, and OH is identified with
13CO
2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the
12CO
2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K.
13CO
2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than
12CO
2. The derived N CO 2 / N H 2 O ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H
2O and CO
2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.
- Organisation(s)
- Department of Astrophysics
- External organisation(s)
- Max-Planck-Institut für extraterrestrische Physik, Université Paris Saclay, Katholieke Universiteit Leuven, Max-Planck-Institut für Astronomie, University of Groningen, Université de Liège, Centro de Astrobiología (CAB), Sorbonne Université, INAF Astronomical Observatory of Capodimonte , The Royal Observatory, Edinburgh, Eidgenössische Technische Hochschule Zürich, Radboud University, SRON Netherlands Institute for Space Research , Stockholm University, Dublin Institute for Advanced Studies, Leiden University, Technical University of Denmark (DTU), Chalmers University of Technology, Österreichische Akademie der Wissenschaften (ÖAW)
- Journal
- The Astrophysical journal Letters
- Volume
- 947
- Pages
- L6
- ISSN
- 2041-8205
- DOI
- https://doi.org/10.3847/2041-8213/acc44b
- Publication date
- 04-2023
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103004 Astrophysics, 103003 Astronomy
- Keywords
- ASJC Scopus subject areas
- Astronomy and Astrophysics, Space and Planetary Science
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/5e255fab-45f3-40c7-a4fb-bc4666b60b51