Mega El Niño instigated the end-Permian mass extinction

Author(s)
Yadong Sun, Alexander Farnsworth, Michael M Joachimski, Paul B Wignall, Leopold Krystyn, David P G Bond, Domenico C G Ravidà, Paul J Valdes
Abstract

The ultimate driver of the end-Permian mass extinction is a topic of much debate. Here, we used a multiproxy and paleoclimate modeling approach to establish a unifying theory elucidating the heightened susceptibility of the Pangean world to the prolonged and intensified El Niño events leading to an extinction state. As atmospheric partial pressure of carbon dioxide doubled from about 410 to about 860 ppm (parts per million) in the latest Permian, the meridional overturning circulation collapsed, the Hadley cell contracted, and El Niños intensified. The resultant deforestation, reef demise, and plankton crisis marked the start of a cascading environmental disaster. Reduced carbon sequestration initiated positive feedback, producing a warmer hothouse and, consequently, stronger El Niños. The compounding effects of elevated climate variability and mean state warming led to catastrophic but diachronous terrestrial and marine losses.

Organisation(s)
Department of Palaeontology
External organisation(s)
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University of Leeds, University of Hull, Georg-August-Universität Göttingen, Chinese Academy of Sciences (CAS)
Journal
Science
Volume
385
Pages
1189-1195
No. of pages
7
ISSN
0036-8075
DOI
https://doi.org/10.1126/science.ado2030
Publication date
09-2024
Peer reviewed
Yes
Austrian Fields of Science 2012
105118 Palaeontology
Sustainable Development Goals
SDG 13 - Climate Action, SDG 15 - Life on Land
Portal url
https://ucrisportal.univie.ac.at/en/publications/a1bc2bc9-a272-4356-a5f1-5bea36ac09f1