Star Formation in the Taurus Filament L 1495: From Dense Cores to Stars
- Author(s)
- Markus Schmalzl, Jouni Kainulainen, Sascha P. Quanz, João Alves, Alyssa A. Goodman, Thomas Henning, Ralf Launhardt, Jaime E. Pineda, Carlos G. Román-Zúñiga
- Abstract
We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructure sand a high mass-per-length value of M line = 17 Msun pc-1, reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 Msun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass,and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, aform commonly observed in star-forming regions.Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica deAndalucía (CSIC).
- Organisation(s)
- Department of Astrophysics
- External organisation(s)
- Max-Planck-Institut für Astronomie, Harvard-Smithsonian Center for Astrophysics, Eidgenössische Technische Hochschule Zürich, Instituto de Astrofísica de Andalucía (CSIC)
- Journal
- The Astrophysical Journal: an international review of astronomy and astronomical physics
- Volume
- 725
- Pages
- 1327-1336
- ISSN
- 0004-637X
- DOI
- https://doi.org/10.1088/0004-637X/725/1/1327
- Publication date
- 12-2010
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103004 Astrophysics
- Keywords
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/ae7d8d20-1515-4569-96e8-8720571fcf60