Asteroseismic analysis of the roAp star ? Circini: 84d of high-precision photometry from the WIRE satellite

Author(s)
H Bruntt, Donald W. Kurtz, Gerald Handler
Abstract

We present a detailed study of the pulsation of ?Circini, the brightest of the rapidly oscillating Ap stars. We have obtained 84d of high-precision photometry from four runs with the star tracker on the WIRE satellite. Simultaneously, we collected ground-based Johnson B observations on 16 nights at the South African Astronomical Observatory. In addition to the dominant oscillation mode at 2442?Hz, we detect two new modes that lie symmetrically around the principal mode to form a triplet. The average separation between these modes is ?f = 30.173 +/- 0.004?Hz and they are nearly equidistant with the separations differing by only 3.9 nHz. We compare the observed frequencies with theoretical pulsation models based on constraints from the recently determined interferometric radius and effective temperature, and the recently updated Hipparcos parallax. We show that the theoretical large separations for models of ?Cir with global parameters within the 1? observational uncertainties vary between 59 and 65?Hz. This is consistent with the large separation being twice the observed value of ?f, indicating that the three main modes are of alternating even and odd degrees. The frequency differences in the triplet are significantly smaller than those predicted from our models, for all possible combinations of mode degrees, and may indicate that the effects of magnetic perturbations need to be taken into account. The WIRE light curves are modulated by a double wave with a period of 4.479d, and a peak-to-peak amplitude of 4mmag. This variation is due to the rotation of the star and is a new discovery, made possible by the high precision of the WIRE photometry. The rotational modulation confirms an earlier indirect determination of the rotation period. The main pulsation mode at 2442?Hz has two sidelobes split by exactly the rotation frequency. From the amplitude ratio of the sidelobes to the central peak, we show that the principal mode is consistent with an oblique axisymmetric dipole mode (l = 1, m = 0) or with a magnetically distorted mode of higher degree with a dominant dipolar component.

Organisation(s)
Department of Astrophysics
External organisation(s)
Copenhagen University Observatory, University of Central Lancashire
Journal
Monthly Notices of the Royal Astronomical Society
Volume
396
Pages
1189-1201
No. of pages
13
ISSN
0035-8711
Publication date
2009
Peer reviewed
Yes
Austrian Fields of Science 2012
1030 Physics, Astronomy
Portal url
https://ucris.univie.ac.at/portal/en/publications/asteroseismic-analysis-of-the-roap-star--circini-84d-of-highprecision-photometry-from-the-wire-satellite(7ab95491-dff9-4e17-bf08-9f53b3d487b4).html