Tadpole type motion of charged dust in the Lagrange problem with planet Jupiter

Author(s)
Christoph Lhotka, Lei Zhou
Abstract

We investigate the dynamics of charged dust interacting with the interplanetary magnetic field in a Parker spiral type model and subject to the solar wind and Poynting-Robertson effect in the vicinity of the 1:1 mean motion resonance with planet Jupiter. We estimate the shifts of the location of the minimum libration amplitude solutions close to the location of the L4 and L5 points of the classical - gravitational - problem and provide the extension of the 'librational regimes of motion' and the width of the resonance in dependency of the nongravitational parameters related to the dust grain size and surface potential of the particles. Our study is based on numerical simulations in the framework of the spatial, elliptic restricted three-body problem and semi-analytical estimates obtained by averaging of Gauss' planetary equations of motion.

Organisation(s)
Department of Astrophysics
External organisation(s)
Università degli Studi di Roma "Tor Vergata", University of Vienna, Nanjing University
Journal
Communications in Nonlinear Science and Numerical Simulation
Volume
104
ISSN
1007-5704
DOI
https://doi.org/10.1016/j.cnsns.2021.106024
Publication date
01-2022
Peer reviewed
Yes
Austrian Fields of Science 2012
103003 Astronomy, 103004 Astrophysics
Keywords
ASJC Scopus subject areas
Applied Mathematics, Numerical Analysis, Modelling and Simulation
Portal url
https://ucrisportal.univie.ac.at/en/publications/db45b8e2-6d98-4a40-aacb-ad4ab253272c