Wildfires in northern Eurasia affect the budget of black carbon in the Arctic-a 12-year retrospective synopsis (2002-2013)
- Author(s)
- N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, H. Skov
- Abstract
In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory-northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory. During the 12-year period, an average area of 250 000 km2 yr-1 was burned in northern Eurasia (FEINE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr-1 (FEI-NECMACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NECMACCity), about 70% originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NECMACCity inventory, we found that 102±29 kt yr-1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56±8 kt yr-1/. The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37% in 2009 (78 vs. 57 kt yr-1/ to 181% in 2012 (153 vs. 54 kt yr-1/, compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68% of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85% (79-91 %) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere.
- Organisation(s)
- Department of Mathematics, Department of Meteorology and Geophysics
- External organisation(s)
- Université de Versailles-Saint-Quentin-en-Yvelines, Norwegian Institute for Air Research, United States Forest Service, Stockholm University, University of Colorado, Boulder, James J. Howard Marine Sciences Laboratory, Environment and Climate Change Canada, Aarhus University
- Journal
- Atmospheric Chemistry and Physics
- Volume
- 16
- Pages
- 7587-7604
- No. of pages
- 18
- ISSN
- 1680-7316
- DOI
- https://doi.org/10.5194/acp-16-7587-2016
- Publication date
- 06-2016
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 105206 Meteorology
- ASJC Scopus subject areas
- Atmospheric Science
- Sustainable Development Goals
- SDG 13 - Climate Action
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/ec61cd32-434f-4093-b7a0-18f951f7c7a8