Emerging Field Grant

Der Emerging Field Grant der Fakultät für Geowissenschaften, Geographie und Astronomie hat zum Ziel, Fakultätsangehörige bei risikoreicherer und brisanterer Forschung in ganz neuen Bereichen der Forschungsschwerpunkte der Fakultät zu fördern. Der Grant gewährt eine Prädoc-Stelle (seit 2020 im Rahmen der Vienna International School of Earth and Space Sciences).



Derzeit gibt es keine Emerging Field Ausschreibung.

Bisherige Preisträger*innen


  • Bewilligtes Projekt: "Microplastics as Anthropocene markers and proxies for sediment connectivity in fluvial systems"
    (Mikroplastik als Marker des Anthropozäns und Indikatoren für die Konnektivität von Sedimenten in fluvialen Systemen), geleitet von Prof. Dr. Michael Wagreich, Prof. Dr. Daniel Le Heron (beide Geologie), Dr. Ronald Pöppl (Geographie und Regionalforschung) in Kooperation mit Prof. Dr. Andreas Stohl, Dr. Silvia Bucci (beide Meteorologie und Geophysik) und Dr. Veronika Koukal (Geologie). Im Zuge des Projekts ist die Anstellung eines Prae-docs geplant.

Plastic pollution is recognized as a major environmental threat and a new class of particle trans-ported by by various geomorphic agents (water, wind). Microplastic has become a hot emerging topic, accumulating in sedimentary archives, thus providing a widespread marker for the Anthropocene. Detailed studies on microplastics in sediments from source to sinks in fluvial-atmospheric systems are largely missing. Objectives of the project are i) to investigate the amount, distribution and age of microplastics in selected fluvial systems, ii) to relate changes in sediment connectivity (e.g. by land use/management, dams, high-magnitude (hydro-)meteorological events) to changes in microplastics in the record (proxy approach), and iii) to investigate contemporary microplastic loadings in soils and rivers and relate them to key input sources and related process dynamics (i.e. via modelling atmospheric transport, water- and wind-mediated erosion, transport and deposition of sediment/microplastic). The study is based on two neighbouring medium-sized catchment systems in Lower Austria (Thayatal National Park). The upper and middle reaches of both systems are dominated by agricultural land use, soil erosion and related high rates of lateral sediment input, as well as widely engineered river channels, while the lower reaches exhibit near-natural forest cover and river conditions. Methods will include the use of a FT-IR-microscope for microplastics attribution (Bruker-LumosII) as well as of the FGGA-(IP-)funded water, sediment and climate monitoring station located in the Fugnitz River. Expected outcomes are detailed case studies on behavior of microplastic in catchment systems.



  • Bewilligtes Projekt: "On the path to the detection of another Earth: exoplanet characterization in the era of JWST"
    (Auf dem Weg zur Entdeckung einer weiteren Erde: Charakterisierung von Exoplaneten in der Ära des James Webb Space Teleskops), geleitet von Dr. Sudeshna Boro Saikia, Univ.-Prof. Dr. Manuel Güdel (beide Institut für Astrophysik) und Univ.-Prof. Aiko Voigt (Institut für Meteorologie und Geophysik) in Kooperation mit Ingo Waldmann (University College London, UK). Im Zuge des Projektes wurde Praedoc Simon Schleich angestellt.

The first detection of an Earth-like atmosphere outside the Solar-system would be one of the biggest scientific achievements of this century. Until now, determining the atmospheric properties of small exoplanets has been very difficult due to limitations in instruments and atmospheric retrieval models. The launch of JWST has provided us with a unique opportunity to explore the parameter space of the smallest known exoplanets, such as super-Earths and mini Neptunes. The aim of this project is to take advantage of new instrumentation, and advances made in atmospheric modeling and new cutting-edge machine learning techniques, to uncover the atmospheric properties of super-Earths and mini Neptunes, a necessary step in our hunt for another Earth. In our sample we will include exoplanetary systems with a wide range of properties and evolutionary history. In order to determine the atmospheric properties of our targets we will apply atmospheric retrieval models to observations taken by JWST and ground-based instruments. Furthermore, we will incorporate machine learning techniques in our atmospheric retrieval pipelines to generalize the models.


  • Bewilligtes Projekt: "Paleoecological significance of Middle Triassic Placunopsis bioherms"
    (Die paläoökologische Bedeutung von Placunopsis-Biohermen der Mitteltrias), geleitet von Univ.-Prof. Dr. Martin Zuschin (Institut für Paläontologie) und Univ.-Prof. Rainer Abart (Department für Lithosphärenforschung). Im Zuge des Projektes wurde Praedoc Julian Huemer angestellt.

The end of the Permian is marked by a devastating mass extinction. Among the earliest buildups in the Triassic are microbial bioherms (i.e., reef-like structures) dominated by a cementing bivalve, which is tentatively assigned to the genus Placunopsis. The paleoenvironmental context of the bioherms is not well understood and no in-depth comparison of these bioherms with other bivalve reefs in Earth history has ever been conducted. We will map the bioherms to understand their environmental distribution in relation to the paleocoastline and study their composition macroscopically and from thin sections. To resolve the taxonomy of Placunopsis, electron backscatter diffraction will be applied to the shells. Petrographic and geochemical methods will help to determine the impacts of phototrophic and/or chemotrophic microbial activity on the precipitation and accretion of the micrite. We will evaluate our findings in the context of the paleoenvironmental conditions after the end-Permian mass extinction, which is characterized by the absence of typical reef builders like calcareous sponges or corals. For generalizations about bivalve reefs, we will compare our findings to other bivalve reefs through Earth history.


  • Bewilligtes Projekt: "Seismic analysis of thunder infrasound"
    (Seismologische Untersuchung des Infraschalls von Donner), geleitet von Prof. Dr. Götz Bokelmann und Ass.-Prof. Dr. Manfred Dorninger (Institut für Meteorologie und Geophysik) – im Zuge des Projektes wurde Praedoc Artemii Novoselov angestellt.

Thunder created during lightning storms are among the most striking physical phenomena that are experienced by the general public. Yet, the mechanisms behind their generation and propagation remain unclear. Detailed insight into their mechanisms can be provided by infrasound, but infrasound recording stations have been sparse until recently.

In 2017 and 2018, striking observations have been made of infrasound propagating across Eastern Austria, using the seismological AlpArray network, e.g. as those generated by the explosion of the Baumgarten gas hub on December 12, 2017, and also from thunder, e.g. during the severe convective weather event on May 2, 2018 in Vienna. We propose to study thunder infrasound systematically, using the multi-year coverage of the AlpArray network, as well as infrasound stations, and to compare with the Austrian lightning detection system. This approach will provide insight into thunder generation, regional infrasound propagation in the Alpine region, and seismo-acoustic coupling.


  • Bewilligtes Projekt: "Elucidating natural colloidal processes by single-particle multi-element fingerprinting with ultra-high frequency spectrometry" (Aufklärung von natürlichen kolloidalen Prozessen mit Hilfe der Einzelpartikel-Mehrelementanalytik auf Basis einer Ultrahochfrequenz-Spektrometrie) geleitet von Dr. Frank von der Kammer im Themenfeld Nanogeowissenschaften des Departments für Umweltgeowissenschaften – im Zuge des Projektes wurde Praedoc Jan Schüürmann angestellt.

Over the last decade new analytical opportunities have emerged to investigate the role and functions of natural colloids and natural nanoparticles (particles in the size range from 1 to 1000 and 1 to 100 nanometers respectively) in environmental processes such as pollutant transport. Only a small fraction by mass, the large specific surface area of colloidal particles makes them an important part of the reactive surface area on the planet, with direct implications on pollutant scavenging and transport. The concepts and methods developed within the Nanogeosciences theme of the Department of Environmental Geosciences, along with novel instrumentation now available at the University of Vienna, enable us to gain  insights into these processes on a (formerly not accessible) highly sensitive and isotopically resolved single particle level. This project deals with the occurrence, formation and transformation of natural colloids and natural nanoparticles and the associated trace metals in soils, sediments, peat, surface waters and ice core samples that reflect influences from pre-industrial to current anthropogenic pollution, with sample sites ranging from pristine to highly contaminated areas. Overall the project strives for a better understanding of the anthropogenic impact on the environment by untangling the complexity of natural colloidal processes.

The term Anthropocene is widely used denoting changes on the Earth System that result from the influence of mankind on nature. The awarded project focuses on the growth of the anthropogenic influence in the urban environments of Vienna and it surroundings, so far not evaluated with regard to the Anthropocene context. The term Anthropocene Surge herein refers to the accelerating growth - forward, upward and downward - of urban artificial deposits under cities such as Vienna from pre-historic to historic time, especially during the last century and a half, ongoing and still accelerating in recent and future times, caused by a combination of human and geological forces. The project aims among others to develop a classification of anthropogenic sediments of Vienna, to map anthropogenic deposits of Vienna using GIS and to develop 3D models of anthropogenic stratal units, showing their present form as well as their development over time. As general approach the project strives to contribute to the stratigraphy of the Anthropocene by exemplifying the evolution of the anthropogenic sediments in Vienna.


Calderen sind vulkanischen Vertiefungen mit 1-100 km Durchmesser. Sie bilden sich durch katastrophales Absinken der Erdkruste als Folge davon, dass sich eine Magmenkammer im Rahmen einer großen Eruption entleert hat und deren Dach einsinkt. Ein akutes Problem für die Gefahreneinschätzung ist die anhaltende Unsicherheit und Debatte darüber, wie Caldereneinbrüche ausgelöst werden, wie sie sich entwickeln und wie sie in der Tiefe strukturell akkommodiert werden. Im Rahmen dieses Emerging Field Grant-Projektes werden hochmoderne dreidimensionale Computersimulationen von ruhelosen Calderen entwickelt, die Einsicht in vulkanische Tiefenprozesse geben. Noch ist unklar, ob diese Simulationen die Entwicklung von Calderen naturgetreu abbilden, jedoch könnte die neue Methodik das Forschungsgebiet Vulkanotektonik revolutionieren.


  • Bewilligtes Projekt: “In Search for Habitable Worlds: Probing the Young Solar System“ (Auf der Suche nach habitablen Welten: Untersuchung des jungen Sonnensystems) der Arbeitsgruppe Stern- und Planentenentstehung von Univ.-Prof. Dr. Manuel Güdel (Institut für Astrophysik) – im Zuge des Projektes wurde Praedoc Tu Lin angestellt

Wie kann man aus den vielfältigen Eigenschaften, die unser Sonnensystem und insbesondere die gegenwärtige Erde charakterisieren, Rückschlüsse auf die ferne Vergangenheit des Sonnensystems und insbesondere unsere Sonne ziehen? Dieser Frage geht das 2013 mit dem Emerging Field Grant ausgezeichnete Projekt nach. Während die Vielfalt extrasolarer Planetensysteme und deren Sterne eine eindeutige Aussage erschweren, sollen Modellrechnungen Aufschlüsse über die Entstehungsgeschichte unserer planetaren Umgebung geben.